Semivariograms

o All forms of kriging assume you know Cov (Z(s;), Z(s;))
@ Usually, need to estimate this

o Big problem: only have one observation at s; and one at s;

o usual data-based estimate won't work!

o Also, need vector of Cov (Z(so), Z(s;)) when haven't observed Z(sg)
@ Need a model! How does Cov (Z(s;), Z(s;)) depend on:

o distance between s; and s;

o direction from s; to s;

o location of s; and s; in the study area

@© Philip M. Dixon (lowa State Univ.)
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@ Two pairs of points, same direction, same distance,
different parts of study area

@ Same covariance?
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Stationary spatial processes

@ 2nd order stationary

o yu(s) constant across study area

o Cov (Z(s), Z(s+ h)) same across study area

h specifies a particular distance and direction

e So in previous picture, the two pairs of points would have same Cov
@ instrinsic stationarity

e Var (Z(s) — Z(s + h)) same everywhere

o Slightly weaker assumption

e Some really care about the difference. | don't.

o We'll assume 2nd order stationarity
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Isotropic spatial process

o Cov (Z(s), Z(s+ h)) same in all directions
Only depends on distance between two points, i.e. || ||

o Anisotropic: Cov (Z(s), Z(s + h)) depends on direction
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Anisotropic spatial process

@ Geometric anisotropy: simple scaling & rotation — isotropy
draw picture on board
@ For the most part, we will assume isotropy
o If geometric anisotropy, can transform coordinates to make isotropic
o If general anisotropy, can repeat what we're about to do in different
directions
more complications, more details, no change in concept
@ So, Cov (Z(s;), Z(s;)) depends on ||s; — sj||, i.e. Euclidean distance
between s; and s;
o If working over large areas, should use great circle distance instead
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Semivariogram clou

@ Assuming 2nd order stationarity, so x constant
o so can calculate (Z(s;) — Z) (Z(s;) — Z)

o for each pair of obs.

o Plot vs. distance

o Empirical covariogram cloud

1 2
@ Or, can calculate 5 (Z(s;) — Z(s;))
o Empirical semivariance cloud
o Notice that don't have to calculate Z to estimate the semivariance

o These are related: When o2 constant,
1 - .
5 (2(si) - Z(sj))? = 0 — (Z(s1) - 2) (Z(s}) - 2)

o Example: covariogram and semivariogram clouds for the Swiss rain
data
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Semivariogram plot

@ Smooth semivariogram cloud by averaging
@ “Classical” or Matheron estimator
1

) = 5 gy Een [2(5) = Z(s))

Sum over pairs of points separated by distance h
N(h) is number of pairs
Easy to do above on a grid.

When locations are irregular, have to create “distance bins”

o Define a range of distances = a bin, e.g. 0-25000m
o Calculate mean distance and mean semivariance for the bin
o Repeat for rest of bins

@ Plot X = mean distance vs. Y= mean semivariance
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Choice of bin size/number

@ How precise is the estimated semivariance?

2
Var §(h) ~ 2/?/((:))

@ How big should the bin be?
e Want at least 30, preferably 50 or more, pairs per bin
@ Choice of binning matters
o very common to make all bins equally wide
o but, N(h) often small for large h
o 4(h) not very precise, semivariogram is erratic
@ Solution: don't calculate §(h) for large distances
o one recc.: calculate §(h) to 1/2 max distance
o Swiss rain: max distance is 291 km, so calculate to h = 150 km.
o Notice default max distance in R is less

@ Would like to have 10-15 bins, but # pairs more important

(@© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 11 /56

Choice of bin size/number

@ N(h) often small at short distances, when locations irregular
o less of a problem because ~(h) small, so Var §(h) small
@ Alternative is to have equal # pairs per bin
o — wide bins for short distances and very long distances
o concern is loss of information about 4(h) at small h
o that info. is crucial for fitting models to semivariograms

o | tend to use equi-distant bins without large lag distances

(@© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 12 /56
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ressie-Hawkins estimat

o Classical estimator is very sensitive to outliers
o One unusual value can really mess up 4(h) because used in N-1 pairs.
o Cressie-Hawkins estimator is more robust to outliers

05 [Znn | Z(s)) — Z(s;) V2]

0.494 0.045
0.457 + §08 + 3345

A(h)en =

@ Where does this come from?
o | Z(s;) — Z(s;) |*/? is not dominated by a single large squared
difference
o That makes C-H more robust to outliers
o When Z(s) ~ N(0,1),
0.494  0.045

£ ﬁ [XNW I Z(si) = 2(s)) I”zr ~ 2y(h) [0.457 S ORI

o = C-H estimator (also called robust SV estimator)
o With either estimator, plot of X=h vs. Y=4(h) describes the pattern
of spatial correlation
@ Often (but not always) CH and Matheron estimates are similar
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Semivariogram parameters

@ Three important numbers that describe the semivariogram:
nugget, sill, and practical range

practical
range

'<— nugget

Philip M (lowa State Univ.)



Semivariogram parameters

@ Nugget: v(0), semivariance at 0 distance.
o Replicate observations at a single location assumed to be identical
(variance=0)
e nugget = micro-scale variation
o term from mining geology:
nuggets of metal in ore — micro-scale variation
o Sill: y(h), for large h.
o If 02 constant, sill = 02
o Sill is an asymptote, technically, v(h) never equals sill.
@ Practical range: where y(h) = 0.95(sill — nugget)
o obs. separated by more than the practical range are essentially
uncorrelated.
o 0.95 is traditional, other fractions sometimes used.

@ All above assumes one spatial process.

@ Can have multiple sills and practical ranges if multiple processes

@© PhilipM xon (lowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 17 /56
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Semivariogram models

o If field is second order stationary,
o y(h) = 02 — Cov (h) = Cov (0) — Cov (h), so
o Cov (h) = Cov (0) — ~v(h)

@ Now all need to do is estimate y(h) for any h

A: Model (h). We will focus on three parametric models:

@ Spherical: 3
3h 1/h
2
= —_ = = <
v(h) =0 5573 <a> , for h<a

o Cov exactly 0 for h > a

@ Exponential: S(h) = 02[1 — exp(—3h/a)]

@ Gaussian:

0= -en-3 (1))

@ In all, « is the practical range, o2 is the sill
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Some variogram models

—— Matern, 0.25
—— Exponential
—— Whittle
2 —— Gaussian
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Semivariogram models

@ Exponential and Gaussian are two specific examples of models in the
Matern class, a large family of semivariogram models

k
y(h) =o? |1 - % (%) 2K (6h)

o (k) and K(0h) are math special functions (Gamma and modified
Bessel fn of 2nd kind, order k)

o O controls the range, = 1/a, o2 controls the sill

o k controls the shape of the variogram

o Gaussian is k = 2, exponential is k = 0.5.

@ k =1 is the Whittle model. | have found it quite useful

)

@ The Gaussian is one of the historical, traditional models
o Current opinion is to avoid it, corr = 1 for nearby locations.
o Wackernagel, 2003. The Gaussian model is “pathological”.
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e variogram models

o linear: v(h) =6h

no sill!, unless you force one.

Not second order stationary, C(0) = 0 doesn't exist unless you force a
sill

But is intrinsic stationary:

Var (Z(si) — Z(s;)) is constant for any distance h

o So semivariogram is well defined

My experience is that a linear trend semivariogram usually indicates
trend across the study area

| suggest modeling the trend, then computing a semivariogram from
the residuals from that trend

@ wave or hole-effect: A b
W(h) - 02 [1 B <7> Sin <7>:|
« (6]

models periodic spatial patterns
picture on next slide
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More Semivariogram models
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@ Can add to any model
o e.g. Exponential with nugget

7(h) = 0§ + 0% [1 — exp(~3h/a)]

o 02 now called partial sill, is the spatially-associated variation
o 03 is the micro-scale variation
@ In practice, very few pairs of observations are really close to each
other, i.e. with h~ 0
e So, the estimated nugget is an extrapolation down to h =0
e nugget can be very sensitive to the choice of semivariogram model.
o Even if there is a nugget, v(0) is still defined as 0
o The Kriging prediction at an obs. location is the obs. value
o But, v(€) = nugget, where € is a very small number
o Which means that the prediction of Z(s) can be quite different a very
small distance away from that observed location
o Will talk later about “measurement error Kriging” which is not a
perfect predictor at observed locations
o And redefines what "nugget” means.
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Estimating a SV model

@ Given an empirical average SV or SV cloud and a model, how do you
estimate the SV model parameters (e.g. o2, a, and perhaps 03)?

@ All SV models are non-linear functions of their parameters

o Not X1;81 + Xzif2

o Still use least-squares

Could fit to cloud, but tradition is to fit to binned averages

Given 4(hj,0) for a set of bins, a specific model, and parameters 6
o Find 6 = (02, a, 03) for which X [y(h;) — §(h;, 0)]° is as small as
possible

Same criterion as linear regression

@ No closed-form solution - need iterative algorithm
e must provide starting values
o bad start — big trouble
o generally well-behaved if start is reasonable

@ | (and everyone else) uses eyeball guess as starting values
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Empirical variogram for Swiss rain
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Fitting SV models

@ One issue:
o LS assumes all obs equally important
e But, if Var Y2 > Var Y;, want to give more attention to fitting Y;
more closely

o Remember Var (§(h) = 2;(:22

e more pts —| Var
o 14(h) =1 Var
@ Used weighted LS to put more emphasis on obs with lower variance
o Minimize Tw; [y(h;, 0) — v(h)]?
o statistically optimal weights are w; = 1/Var ~(h;)
Problem: Var depends on v(h), which is what we are trying to
estimate!

Solution (not the only one): use w; = % as the weight
assumes y(h) = h
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Which SV model to use?

@ Which model to use? Two approaches:

@ 1) which model best fits semivariogram

@ use wt SS as measure of fit. For Swiss rainfall:
Exponential: SS = 1.608

Spherical: S5=1.184

Gaussian: SS=1.258

Matern, k=0.25: won't fit

Matern, k=5: 1.153

Matern, k=4: 1.140

Suggests Spherical or Matern with k=4

@ 2) which model gives most accurate predictions?
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Which SV model to use?

@ One small problem with assessing predictions

o Us

1)

ing data twice:
e Once to fit SV model
o Again, to assess precision of predictions

known to be overly optimistic and favor models with more parameters
leads to overfitting data at hand

Three solutions, all often used:

Training/test set

fit model to subset of data (training set)
evaluate on remaining data (test set)

requires arbitrary division into training and test

L]
o
o
e both are subsets of full data set

© Philip M
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Cross-validation

e 2)

@ 3)

cross-validation
o remove 1st obs, using N — 1 obs. to fit SV and predict Z(s1)

A 2
calculate squared error for 1st obs: [Z(sl) - Z(sl)]

Z(s1) NOT based on Z(s1), so valid “out-of-sample” prediction
return 1st obs. to data set, remove 2nd obs., repeat above
repeat for all obs., average squared errors

A 2
gives mean squared error of prediction: % [(Z(s,') - Z(s;)}

exact same concept as PRESS statistic in linear regression
k-fold CV

o If many points, leave-one-out can be slow

Divide data into k “folds” =sets of obs., k=5 and k=10 are common
remove entire set of obs., fit model on 90% (for k=10) of data
predicte omitted points, calculate rMSEP

repeat for all other parts

@© Philip
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Cross-validation

e Fo

e Su

r Swiss rainfall data:

o Exponential: MSEP = 3615
e Spherical: MSEP = 3447

e Gaussian: MSEP = 3725

o Matern, k=5: 3610

o Matern, k=4: 3591

ggests Spherical (one of two with good fit)

@ But, none substantially better than any other
o CV also provides a way to assess overall quality of the model

© Philip M

o plot predicted values vs residuals - should be flat sausage, just like for
linear regression
o spatial (or bubble) plot of residuals - should be no big clusters
plots on next page
o Compare range of residuals to range of obs. values
obs. values: 0 to 493, residuals: -240 to 160
more variability than probably would like
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Other ways to fit SV models

@ REML (REstricted/REsidual Maximum Likelihood)

o likelihood-based, after removing fixed effects

e avoids binning

o most commonly used with linear models for trend / treatment effects
@ More advanced methods

o Composite likelihood and generalized estimating equations

e not commonly used
o Final point about Swiss rainfall data

o seems not isotropic (plot of 'variogram map’ on next page)
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Local prediction

o Currently, using all observations to make predictions
@ Only have to compute X1 once

@ What if you have a large number of observations (e.g. 1 million)
X is too large

@ Or, believe 1 changes over space (and you don’t want to model that
change)

@ use only nearby obs. to predict at a location

@ This is called “local prediction”

o Either use some max. # obs., or all obs. within some specified
distance of prediction location.
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@ We've talked about visual assessment of anisotropy
o Variogram maps and directional variograms

@ How to deal with different types of anisotropy

o Geometric anisotropy:

o Range longer in one direction than another

o Nugget and (partial) sill same in all directions

o Rotate coordinate system so longer direction aligned with an axis
o Then rescale that axis

o Do this by:

«_ |10 cosf) —sind
S0 A sinf  cosd | °
Where 6 is the angle of the major axis and A is the ratio of length of
minor to length of major axis
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Zonal anisotropy

variogram sills vary with direction

The direction with the shorter range also has the shorter sill.

model by a combining an isotropic model and a model which depends
“only on the lag-distance in the direction @ of the greater sill”
(Schabenberger and Gotway, 2005, p 152).

y(h) = n(ll h|]) +72(ho)

Chiles and Delfiner (1999, p. 96) warn against axis-specific models,
eg: v(h) =n(h) + 72(hy)
o Under certain circumstances they can lead to Var Z(s) = 0, which not
good.
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Kriging with anisotropy

Geometric anisotropy

krige() can do this for you
in the vgm() specification of the variogram model,
o add anis=c(f, \)
o 0 is the direction of the longest range (highest correlation)
in degrees, measured clockwise from the + vertical axis (N)
o ) is the ratio of minor range to major range (a value from 0 to 1)
e so anis=c(60,0.2) specifies a major axis at 2 o'clock with a length 5
times the minor axis.
@ Zonal anisotropy
o “fake it" by setting up a geometrically anisotropic component with a
major axis much longer than the minor axis (e.g. A = 0.00001.
o Only distances only along the major axis contribute to (h)

°
@ Do not have to transform and back transform coordinates
°
°
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Measurement error kriging

@ Remember the effect of the nugget:
o At the location of an observed value, 2(s) = Z(s).
e and Var Z(s) = 0 at that location

o but any small distance away from that s, Var Z(s + h) = o‘%ugget

Kriging “honors the data”

Assumes that a hypothetical repeat observation at s will be exactly
the same number

What if there is measurement error in Z(s)?

e So, a repeat measurement at same location will not be the same value.
o Now, do not want to honor the data (because what we observe
includes non-repeatable measurement error)

Identification problem: have only one obs. per location.
Can not separate nugget from measurement error

Need outside information / guess about the magnitude of the
measurement error
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Measurement error kriging

“ ) . ..
If you “know" 07,eas. error» then can account for this when kriging

Consequence is that prediction at observed locations is a “smoothed”
version of the observations.

Simplest example of the difference is a pure nugget process
no spatial correlation at the spatial scale of the observations

If 100% nugget, prediction is the mean value except at the observed
values

If 50% nugget, 50% meas. error, prediction at observed values pulled
towards the mean

If 100% meas. error, prediction is almost the mean everywhere

Pictures on next three slides
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Measurement error krigi

@ Specify a known measurement error by adding Err=value to vgm
model
o Must specify specific value. Can not (to my knowledge) estimate it
o Data can not separate nugget (micro-scale variation) and meas. error
o unless there are repetitions at the same location.
o 2 obs with same loc. are a problem for most software
o Correlation = 1, so VC matrix no longer full rank
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Block Kriging

@ To now, we've focused on predicting Z(s) individual locations
o locations assumed to be points w/o area
o (physical/mathematical simplification, not reality)

@ In many applications, want to predict total over some area
o total and mean interconvertable: total = mean*area

@ Areas are not undividable units

o experiment on people. A person is a clearly defined, undividable unit
e experiment in a field. You choose the plot size - no clearly defined
undividable unit

o Called the Modifiable Areal Unit Problem (MAUP)
o both size and shape of area matter
o inferences depend on both
e e.g. Variance between “replicate” field plots depends on size and shape
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Block Krigin

o MAUP is one example of a “change of support” problem
@ Support: size, shape, and orientation of a unit associated with a
measurement
o Changing support, e.g. by averaging or aggregating,
o creates new random variables (for the new plots)
o related to original r.v's, but spatial and statistical properties are
different
e e.g. semivariogram parameters will change
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Block Kriging

@ Block Kriging is a second ex. of a COSP
e predict Z(B) for block B with area | B |:

2(B) = l—;l/BZ(s) ds

e Z(B) is an average, so total in the block / area of block
o In practice, predict at a grid of point locations within B, and average:
Z(B) = X/\,'Z(S,’)
o choose \; to minimize MSEP
o like OK, but based on “point-to-block” covariances

Cov (2(8). 2(5) = 757 . Con(Z(w).2(s)
B
o Again, approx. by setting up a grad of pts in B:

Cov (2(B), Z(s1)) = 1%;Cov(Z(wy). Z(s1)) d
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Non-linear Kriging

o reminder: Best predictor (smallest MSEP) is E [Z(so) | Z(s)]
Gaussian: linear function of observations: Y \;Z(s;)

Other distributions: still want E [Z(so) | Z(s)], but that won't be a
linear fn of obs.

@ Log Normal kriging

log Z(s;) ~Gaussian, use log-transformed obs., predict

P(so) = log Z(so) R

then back transform: Z(sq) = exp P(so)

e P(sg) is an unbiased prediction of log Z(so), but exp P(sg) is a biased
predictor of Z(sp).

Jensen's inequality, demonstrated by HW 1 question
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LogN kriging: Solutions

@ 1) Ignore the problem, focus on medians
o exp P(sg) is an asymptotically unbiased estimate of the median of
Z(s0)-
@ 2) Use properties of logN distribution
o when log Z(so) ~ N(u,0?), E Z = exp(u + 02/2, E
2(50) = exp(p + Var 2(50)/2
o so predict log Z(so),
calculate 0?(sg) = Var Z(sp),
estimate o2 (e.g. by sill)
o predictor of Z(sp) is

P(s0) = exp [log Z(so) + 0/2 — a*(s0) /2]
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Trans-Gaussian Kriging

@ log is one member of the Box-Cox family of transformations. For

these N
Z(s0)*—1
Z(so) =4 A A>0
log Z(sg) A=0
e A =1 = no transformation
e A = 0.5 = proportional to \/Z(sq) transformation
e A\ = —1= proportional to 1/Z(sg) transformation
e purpose of % is so that limit as A — 0 is log transformation

@ Since kriging minimizes MSEP, want / prefer symmetric distribution
of values

e if including covariates (UK), want / prefer symmetric distribution of
residuals
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Indicator Kriging

@ What if you want to predict an exceedance probability,
P[Z(so) > threshold ]
o e.g. legal limit on concentration of mercury in fish
o Kriging predicts E [Z(so) | Z(s)]
o Define Z*(so) = I(Z(so) > threshold )
o Z*(sg) = 1 if condition is true (Z(sg) > threshold )
o Z*(sg) = 0 if condition is false (Z(sg) < threshold )
o E Z*(so) = P[Z(s0) > threshold ]
@ Apply indicator transformation to all obs,
estimate semivariogram from indicator variables (can be hard)
then krige.
@ Issues:
no guarantee that 0 > p > 1
remember, Z(sg) can exceed range of data
variety of ad-hoc fixes
there are more complicated methods
my general sense is they don't work markedly better
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Indicator Kriging

o Can use many thresholds to approximate the cdf of Z(so)

Define Zy(s) to be I(Z(s) < k1),

and Z,(s) to be I(Z(s) < k),

for many values of k N

gives you predictions of F(ki), F(ka), ...

o Note: E Z*(sg) | Z*(s) is not the same as E Z*(sg) | Z(s) because
the indicator transformation “throws away” information.
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Disjunctive Kriging

Extend indicator kriging from 2 regions (e.g. Z(so) < 10 or
Z(so) > 10) to many

e.g. Z(so) < 10, 10 > Z(s0) < 20, 20 > Z(so) < 30, ...
Knowing 10 > Z(sg) < 20 is more informative than knowing only
that Z(so) < 20 (IK)

very elegant math (which we'll ignore)

— predict any function g(Z(so)), including the set of indicator
functions

Richard Webster has published a lot of ag-related studies using
disjunctive kriging

Only available in R in the Rgeostats package
Note: can combine block kriging ideas with any of the non-linear
krigers

o e.g. define 1km x 1km areas and estimate P[soil N > threshold]
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